Person:
AKBULUT, FATMA PATLAR

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Dr. Öğr. Üyesi

Last Name

AKBULUT

First Name

FATMA PATLAR

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    NeuroBioSense: A Multidimensional Dataset for Neuromarketing Analysis
    (Elsevier, 2024) KOCAÇINAR, BÜŞRA; İNAN, PELİN; ZAMUR, ELA NUR; ÇALŞİMŞEK, BUKET; AKBULUT, FATMA PATLAR; Çatal, Çağatay
    In the context of neuromarketing, sales, and branding, the investigation of consumer decision-making processes presents complex and intriguing challenges. Consideration of the effects of multicultural influences and societal conditions from a global perspective enriches this multifaceted field. The application of neuroscience tools and techniques to international marketing and consumer behavior is an emerging interdisciplinary field that seeks to understand the cognitive processes, reactions, and selection mechanisms of consumers within the context of branding and sales. The NeuroBioSense dataset was prepared to analyze and classify consumer responses. This dataset includes physiological signals, facial images of the participants while watching the advertisements, and demographic information. The primary objective of the data collection process is to record and analyze the responses of human subjects to these signals during a carefully designed experiment consisting of three distinct phases, each of which features a different form of branding advertisement. Physiological signals were collected with the Empatica e4 wearable sensor device, considering non-invasive body photoplethysmography (PPG), electrodermal activity (EDA), and body temperature sensors. A total of 58 participants, aged between 18 and 70, were divided into three different groups, and data were collected. Advertisements prepared in the categories of cosmetics for 18 participants, food for 20 participants, and cars for 20 participants were watched. On the emotion evaluation scale, 7 different emotion classes are given: Joy, Surprise, anger, disgust, sadness, fear, and neutral. This dataset will help researchers analyse responses, understand and develop emotion classification studies, the relationship between consumers and advertising, and neuromarketing methods.
  • PublicationOpen Access
    Investigating the Effects of Stress on Achievement: BIOSTRESS Dataset
    (Elsevier Inc., 2023) ÇÖPÜRKAYA, ÇAĞLA; MERİÇ, ELİF; ERİK, ELİF BERRA; KOCAÇINAR, BÜŞRA; AKBULUT, FATMA PATLAR; Çatal, Çağatay
    The effects of chronic stress on academic and professional achievement can have a substantial impact. This relationship is highlighted through a dataset that includes questionnaires and physiological data from a group of individuals. The questionnaire data of 48 individuals, the physiological data of 20 individuals during sessions with a psychologist, and the exam data of 8 individuals were analyzed. The questionnaire data collected includes demographic information and scores on the TOAD stress scale. Physiological data was captured using the Empatica e4, a wearable device, which measured various signals such as blood volume pulse, electrodermal activity, body temperature, interbeat intervals, heart rate, and 3-axis accelerometer data. These measurements were taken under different stress conditions, both high and low, during therapy sessions and an exam respectively. Overall, this study significantly contributes to our understanding of how stress affects achievement. By providing a large dataset consisting of questionnaires and physiological data, this research helps researchers gain a better understanding of the complex relationship between stress and achievement. It also enables them to develop innovative strategies for managing stress and enhancing academic and professional success.
  • PublicationOpen Access
    Bimodal affect recognition based on autoregressive hidden Markov models from physiological signals
    (2020-10) Perros, H.G; Shahzad, M.; AKBULUT, FATMA PATLAR
    Background and objective: Affect provides contextual information about the emotional state of a person as he/she communicates in both verbal and/or non-verbal forms. While human's are great at determining the emotional state of people while they communicate in person, it is challenging and still largely an unsolved problem to computationally determine the emotional state of a person. Methods: Emotional states of a person manifest in the physiological biosignals such as electrocardiogram (ECG) and electrodermal activity (EDA) because these signals are impacted by the peripheral nervous system of the body, and the peripheral nervous system is strongly coupled with the mental state of the person. In this paper, we present a method to accurately recognize six emotions using ECG and EDA signals and applying autoregressive hidden Markov models (AR-HMMs) and heart rate variability analysis on these signals. The six emotions include happiness, sadness, surprise, fear, anger, and disgust. Results: We evaluated our method on a comprehensive new dataset collected from 30 participants. Our results show that our proposed method achieves an average accuracy of 88.6% in distinguishing across the 6 emotions. Conclusions: The key technical depth of the paper is in the use of the AR-HMMs to model the EDA signal and the use of LDA to enable accurate emotion recognition without requiring a large number of training samples. Unlike other studies, we have taken a hierarchical approach to classify emotions, where we first categorize the emotion as either positive or negative and then identify the exact emotion.