Person:
AKBULUT, FATMA PATLAR

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Dr. Öğr. Üyesi

Last Name

AKBULUT

First Name

FATMA PATLAR

Name

Search Results

Now showing 1 - 6 of 6
  • PublicationOpen Access
    Deep Learning-Based User Experience Evaluation in Distance Learning
    (Springer, 2023) SADIGOV, RAHIM; YILDIRIM, ELİF; KOCAÇINAR, BÜŞRA; AKBULUT, FATMA PATLAR; Çatal, Çağatay
    The Covid-19 pandemic caused uncertainties in many different organizations, institutions gained experience in remote working and showed that high-quality distance education is a crucial component in higher education. The main concern in higher education is the impact of distance education on the quality of learning during such a pandemic. Although this type of education may be considered effective and beneficial at first glance, its effectiveness highly depends on a variety of factors such as the availability of online resources and individuals' financial situations. In this study, the effectiveness of e-learning during the Covid-19 pandemic is evaluated using posted tweets, sentiment analysis, and topic modeling techniques. More than 160,000 tweets, addressing conditions related to the major change in the education system, were gathered from Twitter social network and deep learning-based sentiment analysis models and topic models based on latent dirichlet allocation (LDA) algorithm were developed and analyzed. Long short term memory-based sentiment analysis model using word2vec embedding was used to evaluate the opinions of Twitter users during distance education and also, a topic model using the LDA algorithm was built to identify the discussed topics in Twitter. The conducted experiments demonstrate the proposed model achieved an overall accuracy of 76%. Our findings also reveal that the Covid-19 pandemic has negative effects on individuals 54.5% of tweets were associated with negative emotions whereas this was relatively low on emotion reports in the YouGov survey and gender-rescaled emotion scores on Twitter. In parallel, we discuss the impact of the pandemic on education and how users' emotions altered due to the catastrophic changes allied to the education system based on the proposed machine learning-based models.
  • PublicationOpen Access
    Analysis of Facial Emotion Expression in Eating Occasions Using Deep Learning
    (Springer, 2023) ELİF, YILDIRIM; AKBULUT, FATMA PATLAR; Çatal, Çağatay
    Eating is experienced as an emotional social activity in any culture. There are factors that influence the emotions felt during food consumption. The emotion felt while eating has a significant impact on our lives and affects different health conditions such as obesity. In addition, investigating the emotion during food consumption is considered a multidisciplinary problem ranging from neuroscience to anatomy. In this study, we focus on evaluating the emotional experience of different participants during eating activities and aim to analyze them automatically using deep learning models. We propose a facial expression-based prediction model to eliminate user bias in questionnaire-based assessment systems and to minimize false entries to the system. We measured the neural, behavioral, and physical manifestations of emotions with a mobile app and recognize emotional experiences from facial expressions. In this research, we used three different situations to test whether there could be any factor other than the food that could affect a person’s mood. We asked users to watch videos, listen to music or do nothing while eating. This way we found out that not only food but also external factors play a role in emotional change. We employed three Convolutional Neural Network (CNN) architectures, fine-tuned VGG16, and Deepface to recognize emotional responses during eating. The experimental results demonstrated that the fine-tuned VGG16 provides remarkable results with an overall accuracy of 77.68% for recognizing the four emotions. This system is an alternative to today’s survey-based restaurant and food evaluation systems.
  • PublicationOpen Access
    A Real-Time CNN-Based Lightweight Mobile Masked Face Recognition System
    (IEEE-Inst Electrical Electronics Engineers Inc., 2022) KOCAÇINAR, BÜŞRA; Taş, Bilal; AKBULUT, FATMA PATLAR; Çatal, Çağatay; Mishra, Deepti
    Due to the global spread of the Covid-19 virus and its variants, new needs and problems have emerged during the pandemic that deeply affects our lives. Wearing masks as the most effective measure to prevent the spread and transmission of the virus has brought various security vulnerabilities. Today we are going through times when wearing a mask is part of our lives, thus, it is very important to identify individuals who violate this rule. Besides, this pandemic makes the traditional biometric authentication systems less effective in many cases such as facial security checks, gated community access control, and facial attendance. So far, in the area of masked face recognition, a small number of contributions have been accomplished. It is definitely imperative to enhance the recognition performance of the traditional face recognition methods on masked faces. Existing masked face recognition approaches are mostly performed based on deep learning models that require plenty of samples. Nevertheless, there are not enough image datasets containing a masked face. As such, the main objective of this study is to identify individuals who do not use masks or use them incorrectly and to verify their identity by building a masked face dataset. On this basis, a novel real-time masked detection service and face recognition mobile application was developed based on an ensemble of fine-tuned lightweight deep Convolutional Neural Networks (CNN). The proposed model achieves 90.40% validation accuracy using 12 individuals' 1849 face samples. Experiments on the five datasets built in this research demonstrate that the proposed system notably enhances the performance of masked face recognition compared to the other state-of-the-art approaches.
  • PublicationRestricted
    Global Impact of the Pandemic on Education: A Study of Natural Language Processing
    (Institute of Electrical and Electronics Engineers Inc., 2022) AYAZ, TEOMAN BERKAY; USLU, MUHAMMED SAFA; AĞCABAY, İBRAHİM; AHMED, FARUK; KORKMAZ, ÖMER FARUK; KÜREKSİZ, MESUT; ULUÇAM, EMRE; YILDIRIM, ELİF; KOCAÇINAR, BÜŞRA; AKBULUT, FATMA PATLAR
    School closures due to the Covid-19 pandemic have changed education forever and we have witnessed the rise of online learning platforms. The education units of the countries made great efforts to adapt to this new order. The expanding, quick spread of the virus and careful steps have prompted the quest for reasonable choices for continuing education to guarantee students get appropriate education and are not impacted logically or mentally. Different methods were attempted to understand how students were affected by this big change. In addition to the significance of traditional surveys and consulting services, the utilization of social media analysis is used as a supportive approach. This paper analyzes the feedback of students on social media via tweets. Deep sentiment analysis is employed to identify embedded emotions such as negative, neutral, and positive. We also aimed to classify irrelevant tweets as the fourth category. Our experiments showed that the tweets are mostly biased toward negative emotions. © 2022 IEEE.
  • PublicationRestricted
    Biosignal Based Emotion-Oriented Video Summarization
    (Springer, 2023) DERDİYOK, ŞEYMA; AKBULUT, FATMA PATLAR
    Digital video is a crucial component of multimedia that enhances presentations with accurate, engaging visual and aural data that affects several industries. The transition of video storage from analog to digital is being fueled by a variety of causes. Improved compression methods, cheaper technology, and more network needs are some of these drivers. This paper presents a novel video summarization based on physiological signals provided by emotional stimuli. Through these stimuli, 15 emotions are analyzed using physiological signals. The dataset was gathered from 15 participants who watched 61 episodes of 14 television series while wearing a wristband. We built several deep-learning models for the main purpose of recognizing emotions to summarize video. Among the established networks, the best performance has been obtained with the 1D-CNN, with 92.87% accuracy. This work has been done through a series of empirical experiments; since the frequency of the physiological signals is different, we used models with original and resampled configurations in each experiment. The comprehensive comparison result indicates that the oversampling approach gives the highest accuracy as well as the lowest computational complexity. The performance of the proposed video summarization approach was evaluated by a survey of participants, and the results showed that the summaries contained the critical moments of the video. The proposed approach may be useful and effective in physiological signal-based applications requiring emotion recognition, such as emotion-based video summarization or film genre detection. Additionally, reading such summaries facilitates comprehension of the significance of making rapid judgments regarding likes, ratings, comments, etc.
  • PublicationRestricted
    Deep Sentiment Analysis With Data Augmentation in Distance Education During the Pandemic
    (Institute of Electrical and Electronics Engineers Inc., 2022) SOSUN, SERA DENİZ; TAYFUN, BÜLENT; NUKAN, YASEMİN; ALTUN, İREM; ERİK, ELİF BERRA; YILDIRIM, ELİF; KOCAÇINAR, BÜŞRA; AKBULUT, FATMA PATLAR
    During the global Covid-19 pandemic, the shutdown of educational institutes has resulted in a phenomenal surge in online learning. Academic activities were shifted to online learning platforms to restrict the influence of COVID-19 and block its spread. For both students and parents, the efficiency of online learning is a major concern, particularly in terms of its suitability for students and teachers, as well as its technological applicability in various social situations. Before the online learning approach can be employed on such a big scale, such challenges must be viewed from different aspects. This study aims to assess the efficiency of online learning by examining individuals' sentiments toward it. Due to social media becoming such an essential form of communication, people's opinions can be observed on platforms like Twitter. The main motivation is to use a Twitter dataset featuring online learning-related tweets. Briefly, we focused on specifying the impact of the Covid-19 pandemic on education in many aspects and parameters by using tweets. We utilized natural language processing models for text classification with a gathered dataset that includes fetching tweets consisting of Covid-19 and education topics. We developed a fine-tuned Long short-term memory (LSTM) model that utilizes data augmentation for classifying the emotional states of individuals. With the deep sentiment analysis model that we proposed, we observed that the negative sentiments were experienced more. © 2022 IEEE.