Person: ATAK, ÇİMEN
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Prof.Dr.
Last Name
ATAK
First Name
ÇİMEN
Name
4 results
Search Results
Now showing 1 - 4 of 4
Publication Metadata only Effect of magnetic field on peroxidase activities of soybean tissue culture(DIAGNOSIS PRESS LTD, 67 DONDUKOV BLVD, 1504 SOFIA, BULGARIA, 2007-05) Olgun, Atok; Alikamanoğlu, Sema; Rzakoulieva, A.; ATAK, ÇİMEN; ÇELİK, ÖZGE; TR6653; TR141172In this study, the aim was to determine the effect of magnetic field on peroxidase activities of soybean tissue culture. Shoot tips were put into petri dishes and exposed to a magnetic field for a period of 2.2 and 19.8 s at a magnetic flux of 2.9-4.6 mT. The shoot and root formation rate, fresh weights, chlorophyll quantities, total RNA concentrations and peroxidase activities of regenerated shoots from control and treated shoot tips were determined. While the rate of shoot formation was 28.57% in the control group, this rate was increased to 94.33% and 78.18%, respectively, in the explants that were exposed to a magnetic field for a period of 2.2 and 19.8 s. While the percentage of root formation in controls was 4.76%, this rate increased to 47.17% and 54.54%, respectively, in those that were exposed to a magnetic field at the same periods. When the fresh weights were determined, we found that the fresh weights of plantlets regenerated from treated explants were increased relative to controls. Chlorophyll a, chlorophyll b and total chlorophyll contents increased 21%, 13% and 18%, respectively, relative to control groups at 2.2 s. Peroxidase activity significantly increased in all magnetic field treatments (p<0.05). The total RNA concentration of seedlings regenerated from treatment explants significantly increased relative to controls (p<0.05). The regeneration and plant growth of shoot tips exposed to a magnetic field with a 2.2 s period were positively affected by the MF and increased with respect to controls and the length of time exposed.Publication Embargo The effect of magnetic field on the activity of superoxide dismutase(Haliç University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Fındıkzade 34280, İstanbul-Turkey, 2006) Büyükuslu, Nihal; ATAK, ÇİMEN; ÇELİK, ÖZGE; 6653; 113987; 109872The effects of magnetic field on superoxide dismutase activity were investigated. All living systems are affected by magnetic field and electromagnetic field in a way of their response systems. Since magnetic field has an impact on biochemical reactions that involve more than one unpaired electron, in our study SOD activity, one of the enzyme responsible for antioxidant system, was measured under magnetic fields using an apparatus explained at material methods. There has been a significant increase of SOD activity when passed 0, 1, 9 and 15 times at 2.9-4.6 mT magnetic field density for 0, 2.2, 19.8 and 33.0 seconds respectively.Publication Metadata only Manyetik Alanın Soya (Glycine max L.Merrill) Doku Kültürleri Üzerine Etkisi(2003-08-25) Emiroğlu, Özge; Alikamanoğlu, Sema; Rzakoulieva, Aytekin; ATAK, ÇİMEN; 6653; 113987; 176641Publication Metadata only Effect of magnetic field and gamma radiation on Paulowinia tomentosa tissue culture(DIAGNOSIS PRESS LTD, 67 DONDUKOV BLVD, 1504 SOFIA, BULGARIA, 2007-02) Alikamanoğlu, Sema; Yaycılı, Orkun; Rzakoulieva, A.; ATAK, ÇİMEN; TR6653; TR176641; TR151085In this study Me in vitro tissue culture of the Paulownia tomentosa plant was established and a magnetic field which has 2.9-4.8mT flux density was applied to the culture at a velocity of 1m/s for 19.8 seconds. Additionally, gamma radiation of 10 and 25 Gy was applied as combined to the magnetic field. It was observed that magnetic field increased the capability of regeneration of Paulownia tomentosa cultures and supported the regeneration in a short time in comparison with the control group and applied radiation dose and decreased regeneration capability were re-supported when combined with magnetic field. It was found that magnetic field has a positive effect on plant fresh weight, leaf number and chlorophyll amount on the 28(th) day of established cultures Q P tomentosa node explants and the negative effects on these parameters by radiation, when magnetic field and gamma radiation applied together these parameters changed and aroused depending on the radiation doses.