Person:
ACAR, YUSUF

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Dr. Öğr. Üyesi

Last Name

ACAR

First Name

YUSUF

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Channel Estimation for SM Systems over Time-Varying Rayleigh Fading Channels
    (IEEE, 345 E 47Th St, New York, Ny 10017 Usa, 2014) Doğan, Hakan; Panayırcı, Erdal; ACAR, YUSUF; 237377; 41066; 10331
    This paper is concerned with the challenging and timely problem of channel estimation for spatial modulated systems in the presence of time varying channels. Recently, estimation of channel state information for SM systems is investigated by the recursive least square (RLS) algorithm for slow fading channels. However, it is clear that the RLS based receiver will have a performance degradation for fast fading channels. Therefore, we developed iterative channel estimation based on detected symbols and curve fitting to track the channel variations for SM systems. Simulation results have demonstrated that the proposed iterative channel estimation offer substantial performance gains over the RLS channel estimation. In particular, a savings of about 4dB is obtained at BER = 10(-7), as compared with RLS based receiver at 150km/h for 2 x 4 single carrier SM systems.
  • Publication
    Iterative Channel Estimation For Spatial Modulation Systems Over Fast Fading Channels
    (IEEE, 345 E 47Th St, New York, Ny 10017 Usa, 2014) Doğan, Hakan; Panayırcı, Erdal; ACAR, YUSUF; 237377; 41066; 10331
    Spatial Modulation (SM) based on the use of antenna indices to transmit information in addition to the conventional signal constellations has been recently proposed to solve practical problems encountered in MIMO systems. In the literature, estimation of CSI for SM systems is simply investigated by RLS for slow fading channels. However, iterative receivers that offer significant performance gains over a non- iterative when the total number of pilot is not sufficient and the channel is fast fading have not been investigated for SM based systems. In this paper, it shown that the RLS based receiver has a performance degradation for fast fading channels and a new iterative channel estimation techniques is proposed with the necessary signal model to enhance receiver performance for fast fading channels. Computer simulation results indicate that proposed iterative receiver has a significant performance advantage over the RLS based receiver for time-varying Rayleigh channels.